8086/88 Assembly Instruction Set

How to Read the Instruction Set Chart

The following chart summarizes the machine instructions you can
program with A86. In order to use the chart, you need to learn
the meanings of the specifiers (each given by 2 lower case
letters) that follow most of the instruction mnemonics. Each
specifier indicates the type of operand (register byte, immediate
word, etc.) that follows the mnemonic to produce the given
opcodes. The v type, for A86, is the same as "w" -- it denotes
a 16-bit word. On A386, "v'" denotes either a word or doubleword,
depending on the presence of an operand override prefix byte.

c means the operand is a code label, pointing to a part of the
program to be jumped to or called. A86 will also accept a
constant offset in this place (or a constant segment-offset
pair in the case of "cp'™). '"cb"™ is a label within about 128
bytes (in either direction) of the current location. ™cv" is
a label within the same code segment as this program; "‘cp™ is
a pair of constants separated by a colon-- the segment value
to the left of the colon, and the offset to the right. The
offset is always a word in A86; it can be either a word or a
doubleword in A386. Note that in both the cb and cv cases,
the object code generated is the offset from the location
following the current instruction, not the absolute location
of the label operand. In some assemblers (most notably for
the Z-80 processor) you have to code this offset explicitly
by putting "$-" before every relative jump operand in your
source code. You do NOT need to, and should not do so with
AB86.

e means the operand is an Effective Address. The concept of
an Effective Address is central to the 86 machine
architecture, and thus to 86 assembly language programming.
It is described in detail at the start of this chapter. We
summarize here by saying that an Effective Address is either
a general purpose register, a memory variable, or an indexed
memory quantity. For example, the instruction "ADD rb,eb"
includes the instructions: ADD AL,BL, and ADD CH,BYTEVAR, and
ADD DL,B[BX+17].

i means the operand is an immediate constant, provided as part
of the instruction itself. "ib" is a byte-sized constant;
"iw" is a constant occupying a full 16-bit word. The operand
can also be a label, defined with a colon. In that case, the
immediate constant which is the location of the label is
used. Examples: MOV rw,iw"” includes the instructions: MOV
AX,17, or MOV SI,VAR_ARRAY, where "VAR_ARRAY:" appears
somewhere in the program, defined with a colon. NOTE that if
VAR_ARRAY were defined without a colon, e.g., "VAR_ARRAY DW
1,2,3", then "MOV SI,VAR_ARRAY" would be a "MOV rw,ew" NOT a
MOV rw,iw". The MOV would move the contents of memory at
VAR_ARRAY (in this case 1) into Sl, instead of the location
of the memory. To load the location, you can code "‘MOV
SI1,0FFSET VAR_ARRAY".

m means a memory variable or an indexed memory quantity; i.e.,
any Effective Address EXCEPT a register.
"r'* means the operand is a general purpose register. The 8 "rb"

registers are AL,BL,CL,DL,AH,BH,CH,DH; the 8 "rw' registers
are AX,BX,CX,DX,S1,Dl,BP,SP.

"rv/m'" is used in the Bit Test instructions to denote either
a word-or-doubleword register, or an array of bits in memory
that can any length.

NOTE: The following chart gives all instructions for all
processors through the Pentium. You must take care to use only
the instructions appropriate for the target processor of your
program (the P switch will enforce this for you: see Chapter 3).

Page 1

8086/88 Assembly Instruction Set
IT an instruction form does not run on all processors, there is a
letter or digit just before the description field. "N" means the
instruction runs only on NEC processors (which are rare nowdays).
A digit x means the instruction runs on the x86 or later: 1 for
186, 2 for 286, 3 for 386, 4 for 486, 5 for Pentium.
Instructions with 3 or greater are recognized only by my A386
assembler, received only by those who register both A86 and D86.

VA
Opcodes Instruction Description

67 or nil A2 (prefix) 3 Use 16-bit address (indexing) in next instruction
67 or nil A4 (prefix) 3 Use 32-bit address (indexing) in next instruction

37 AAA ASCI1 adjust AL (carry into AH) after addition
D5 OA AAD ASCII adjust before division (AX = 10*AH + AL)
D4 OA AAM ASCI1 adjust after multiply (AL/10: AH=Quo AL=Rem)
3F AAS ASCI1 adjust AL (borrow from AH) after subtraction
14 ib ADC AL, ib Add with carry immediate byte into AL

15 iv ADC eAX,iv Add with carry immediate vword into eAX

80 /2 ib ADC eb,ib Add with carry immediate byte into EA byte

10 /r ADC eb,rb Add with carry byte register into EA byte

83 /2 ib ADC ev,ib Add with carry immediate byte into EA vword

81 /2 iv ADC ev,iv Add with carry immediate vword into EA vword

11 /r ADC ev,rv Add with carry vword register into EA vword

12 /r ADC rb,eb Add with carry EA byte into byte register

13 /r ADC rv,ev Add with carry EA vword into vword register

04 ib ADD AL, ib Add immediate byte into AL

05 i1v ADD eAX,iv Add immediate vword into eAX

80 /0 ib ADD eb,ib Add immediate byte into EA byte

00 /r ADD eb,rb Add byte register into EA byte

83 /0 ib ADD ev,ib Add immediate byte into EA vword

81 /0 iv ADD ev,iv Add immediate vword into EA vword

o1 /r ADD ev,rv Add vword register into EA vword

02 /r ADD rb,eb Add EA byte into byte register

03 /r ADD rv,ev Add EA vword into vword register

OF 20 ADD4S N Add CL nibbles BCD, DS:SI into ES:DI (CL even,NZ)
24 ib AND AL, ib Logical-AND immediate byte into AL

25 iv AND eAX,iv Logical-AND immediate vword into eAX

80 /4 1ib AND eb, ib Logical-AND immediate byte into EA byte

20 /r AND eb,rb Logical-AND byte register into EA byte

83 /4 ib AND ev,ib Logical-AND immediate byte into EA vword

81 /4 iv AND ev,iv Logical-AND immediate vword into EA vword

21 /r AND ev,rv Logical-AND vword register into EA vword

22 /r AND rb,eb Logical-AND EA byte into byte register

23 /r AND rv,ev Logical-AND EA vword into vword register

63 /r ARPL ew,rw 2 Adjust RPL of EA word not smaller than RPL of rw
62 /r BOUND rv,m2v 2 INT 5 if rw not between 2 vwords at [m] inclusive
OF BC BSF rv,ev 3 Set rv to lowest position of NZ bit In ev

OF BD BSR rv,ev 3 Set rv to highest position of NZ bit in ev

OF C8+r BSWAP rd 4 Swap bytes 1,4 and 2,3 of dword register

OF BA/Z4 ib BT rv/m,ib 3 Set Carry flag to bit # ib of array at rv/m

OF A3/r BT rv/m,rv 3 Set Carry flag to bit # rv of array at rv/m

OF BA/7 ib BTC rv/m,ib 3 Set CF to, then compl bit ib of array at rv/m

OF BB/r BTC rv/m,rv 3 Set CF to, then compl bit rv of array at rv/m

OF BA/6 i1b BTR rv/m, 3 Set CF to, then reset bit ib of array at rv/m

OF B3/r BTR rv/m,rv 3 Set CF to, then reset bit rv of array at rv/m

OF BA/5 i1b BTS rv/m,ib 3 Set CF to, then set bit ib of array at rv/m

OF AB/r BTS rv/m,rv 3 Set CF to, then set bit rv of array at rv/m

9A cp CALL cp Call far segment, immediate 4- or 6-byte address
E8 cv CALL cv Call near, offset relative to next instruction
FF /3 CALL ep Call far segment, address at EA memory location
FF /2 CALL ev Call near, offset absolute at EA vword

OF FF 1ib CALL8O ib N Call 8080-emulation code at INT number ib

98 CBW Convert byte into word (AH = top bit of AL)

99 CcDQ 3 Convert dword to gword (EDX = top bit of EAX)

Page 2

12/0
13/0
1A/0
1B/0

06

C7
BO
Bl

40+rv

6C
6D
6C
6D

/1
/r
/r

w 00
w 01
w ib

/r
ib
iv
iv
ib

CLC
CLD
CLI

CLRB
CLRB

IT eb,CL
IT ew,CL

b CLRBIT eb,ib
CLRBIT ew,ib

CLTS
CMC

CmMP
CMP
CMP
CMP
CmMP
CMP
CmMP
CMP
CmMP

AL, ib
eAX, iv
eb,ib
eb,rb
ev,ib
ev,iv
ev,rv
rb,eb
rv,ev

CMP4S
CMPS mb,mb
CMPS mv,mv
CMPSB
CMPSD
CMPSW

CMPX8 mq

CMPXCHG eb,rb
CMPXCHG ev,rv

CPUID
CwD
CWDE

CS (prefix)

DAA
DAS
DEC
DEC
DEC

eb
ev
rv

DIV
DIV

eb

ENTER
ENTER
ENTER

iw,0
iw,1

F(any)
HLT

eb
ev
eb
ev
rv,ev
rv,ib
rv,iv

IN AL, ib
IN AL,DX
IN eAX,ib
IN eAX,DX

INC eb
INC ev
INC rv

INS eb,DX
INS ev,DX
INSB
INSD

ev
DS (prefix)

iw,ib
ES (prefix)

rv,ev,i
rv,ev,ib

NZZZ22

w abrb~ho

B e

WR R R

8086/88 Assembly Instruction Set

Clear
Clear
Clear

Clear
Clear

carry flag

direction
interrupt

bit CL of
bit CL of

flag so SI and DI will increment
enable flag; interrupts disabled

eb
ew

bit ib of eb

Clear bit ib of ew
Clear task switched flag
Complement carry flag

Clear

Subtract
Subtract
Subtract
Subtract
Subtract
Subtract
Subtract
Subtract
Subtract

immediate byte from AL for flags only
immediate vword from eAX for flags only
immediate byte from EA byte for flags only
byte register from EA byte for flags only
immediate byte from EA vword for flags only
immediate vword from EA vword, flags only
vword register from EA vword for flags only
EA byte from byte register for flags only
EA vword from vword register for flags only

Compare
Compare
Compare
Compare
Compare
Compare

CL nibbles BCD, DS:SI - ES:DI (CL even,NZ)
bytes [S1] - ES:[DIl], advance SI1,DI

vwords [SI] - ES:[DI], advance SI,DI

bytes DS:[S1] - ES:[DI1], advance Sl1,DI
dwords DS:[SI] - ES:[DI], advance SI,DI
words DS:[SI] - ES:[Dl], advance SI,DlI

IT EDXEAX=mq then mq:=ECXEBX, else EAXEDX:=mq

IT AL=eb then set eb to rb, else set AL to eb

IT eAX=ev then set ev to rv, else set eAX to ev
IT EAX=1 set EDXEAX to CPU identification values
Convert word to doubleword (DX = top bit of AX)
Sign-extend word AX to doubleword EAX

Use CS segment for the following memory reference

Decimal adjust AL after addition
Decimal adjust AL after subtraction
Decrement EA byte by 1

Decrement EA vword by 1

Decrement vword register by 1

Unsigned divide AX by EA byte (AL=Quo AH=Rem)
Unsigned divide eDXeAX by EA vword (eAX=Quo eDX=Rem)
Use DS segment for the following memory reference

Make stack frame,
Make stack frame, iw bytes local
Make stack frame, iw bytes local storage, ib levels
Use ES segment for the following memory reference
Floating point set is in Chapter 7

Halt

iw bytes local storage, 0 levels

storage, 1 level

Signed
Signed
Signed
Signed
Signed
Signed
Signed
Signed
Signed

divide AX by EA byte (AL=Quo AH=Rem)

divide eDXeAX by EA vword (eAX=Quo eDX=Rem)
multiply (AX = AL * EA byte)

multiply (eDXeAX = eAX * EA vword)

multiply ev into rv

multiply imm byte into vword register
multiply imm vword into vword register
multiply (rv EA vword * imm vword)
multiply (rv EA vword * imm byte)

Input byte from immediate port into AL
Input byte from port DX into AL

Input vword from immediate port into eAX
Input vword from port DX into eAX

Increment EA byte by 1
Increment EA vword by 1
Increment vword register by 1

Input byte from port DX into [DI], advance DI
Input vword from port DX into [DI], advance DI
Input byte from port DX into ES:[DI], advance DI
Input dword from port DX into ES:[Dl], advance DI

Page 3

ib

08
01

cb
cb
cb
cb
cb

cb
cb
cb
cb
cb
cb
cb

cb
cp
cv
8n
/4
/5

cb
cb
cb
cb
cb

cb
cb
cb
cb
cb

cb
cb
cb
cb
cb

cb
cb
cb
cb
cb

02
/r
/r

/r
B4

01
B5
01
00
01

/7

cv

/r

/r

/2
/r
/3
/2
/6

33/r
3B/0

JCXZ cb
JE cb
JECXZ cb
JG cb
JGE cb
JL cb
JLE cb

JIMP cb
JIMP cp
JMP cv

A D

Jcond LONG cv 3

JMP ev
JMP md

JINA cb
JINAE cb
JINB cb
JNBE cb
JINC cb

INE cb
ING cb
INGE cb
JINL cb
INLE cb

INO cb
JINP cb
INS cb
JINZ cb
JO cb

JP cb
JPE cb
JPO cb
JS cb
JZ cb

LAHF

LAR rv,ew
LDS rv,ep
LEA rv,m
LEAVE

LES rv,ep
LFS rv,ep

LGDT m
LGS rv,ep
LIDT m
LLDT ew
LMSW ew

LOCK (prefix)

NNNWN W P

LODBITS rb,rb N
LODBITS rb,ib N

LODS mb
LODS mv
LODSB
LODSD

8086/88 Assembly Instruction Set
Input vword from port DX into ES:[DI], advance DI

Interrupt 3 (trap to debugger) (far call, with flags

Interrupt numbered by immediate byte

pushed first)

Interrupt 4 if overflow flag is 1
Invalidate the Data Cache without writing
Invalidate the TLB Entry that points to m
Interrupt return (far return and pop flags)
Interrupt return (pop EIP, ECS, Eflags)

Jump short
Jump short
Jump short
Jump short
Jump short

Jump short
Jump short
Jump short
Jump short
Jump short
Jump short
Jump short

Jump short

Jump,

if above
iT above
it below (CF=1)

(CF=0 and ZF=0) above=UNSIGNED
or equal (CF=0)

below=UNSIGNED

if below or equal (CF=1 or ZF=1)

if carry

(CF=1)

if CX register is zero
if equal (ZF=1)

it ECX

register is zero

if greater (ZF=0 and SF=0F) greater=SIGNED
if greater or equal (SF=0F)

if less (SF>0F)

less=SIGNED

if less or equal (ZF=1 or SF>0F)

(signed byte relative to next instruction)
Jump far (4- or 6-byte Iimmediate address)
Jump near (vword offset relative to next instruction)

if condition, to offset >127 away

Jump near to EA vword (absolute offset)
Jump far (4-byte address in memory doubleword)

Jump short
Jump short
Jump short
Jump short
Jump short

Jump short
Jump short
Jump short
Jump short
Jump short

Jump short
Jump short
Jump short
Jump short
Jump short

Jump short
Jump short
Jump short
Jump short
Jump short

iT not
if not
iT not
if not
iT not

iT not
if not
iT not
if not
iT not

iT not
if not
iT not
if not

above (CF=1 or ZF=1)

above or equal (CF=1)

below (CF=0)

below or equal (CF=0 and ZF=0)
carry (CF=0)

equal (ZF=0)

greater (ZF=1 or SF>0F)
greater or equal (SF>0F)

less (SF=0F)

less or equal (ZF=0 and SF=0F)

overflow (OF=0)
parity (PF=0)
sign (SF=0)
zero (ZF=0)

if overflow (OF=1)

if parity (PF=1)

if parity even (PF=1)
if parity odd (PF=0)
if sign (SF=1)

if zero (ZF=1)

Load: AH = flags SF ZF xx AF xx PF xx CF

Load: high(rw) = Access Rights byte, selector ew
Load EA pointer into DS and vword register
Calculate EA offset given by m, place in rv

Set SP to BP, then POP BP (reverses previous ENTER)

Load
Load

Load
Load
Load
Load
Load

into

EA pointer into ES and vword register
EA pointer into FS and vword register

6 bytes at m into Global Descriptor Table reg
EA pointer into GS and vword register

6 bytes into Interrupt Descriptor Table reg
selector ew into Local Descriptor Table reg
EA word

Machine Status Word

Assert BUSLOCK signal for the next instruction

Load
Load
Load
Load
Load
Load

vword

dword

[S1]
[st]

AX with DS:SlI,bit rb (incr. Sl,rb), rb+l1l bits
AX with DS:Sl,bit rb (incr. Sl,rb),
byte [SI] into AL, advance SI

into eAX, advance SI
byte [SI] into AL, advance SI

into EAX, advance SI

ib+1 bits

Page 4

8086/88 Assembly Instruction Set

AD LODSW Load word [SI] into AX, advance SI

E2 cb LOOP cb noflags DEC CX; jump short if CX>0

E1l cb LOOPE cb noflags DEC CX; jump short if CX>0 and equal (ZF=1)
EO cb LOOPNE cb noflags DEC CX; jump short if CX>0 and not equal

EO cb LOOPNZ cb noflags DEC CX; jump short if CX>0 and ZF=0

E1 cb LOOPZ cb noflags DEC CX; jump short if CX>0 and zero (ZF=1)

OF 03 /r LSL rv,ev 2 Load: rv = Segment Limit, selector ew

OF B2 /r LSS rv,ep 3 Load EA pointer into SS and vword register
OF 00 /3 LTR ew 2 Load EA word into Task Register

AO iv MOV AL, xb Move byte variable (offset iv) into AL

Al iv MOV eAX,Xxv Move vword variable (offset iv) into eAX

OF 22 /4 MOV CR4,rd 5 Move rd into control register 4

OF 22 /n MOV CRn,rd 3 Move rd into control register n (=0,2, or 3)
OF 23 /n MOV DRn,rd 3 Move rd into debug register n (=0,1,2,3)

OF 23 /n MOV DRn,rd 3 Move rd into debug register n (=6,7)

OF 26 /n MOV TRn,rd 3 Move rd into test register TRn (=6,7)

C6 /0 ib MOV eb,ib Move immediate byte into EA byte

88 /r MOV eb,rb Move byte register into EA byte

C7 /0 iv MOV ev,iv Move immediate vword into EA vword

89 /r MOV ev,rv Move vword register into EA vword

8C /r MOV ew,segreg Move segment register into EA word

BO+rb ib MOV rb,ib Move immediate byte into byte register

8A /r MOV rb,eb Move EA byte into byte register

OF 20 /74 MOV rd,CR4 5 Move control register 4 into rd

OF 20 /n MOV rd,CRn 3 Move control register n (=0,2, or 3) into rd
OF 21 /n MOV rd,DRn 3 Move debug register n (=0,1,2,3) into rd

OF 21 /n MOV rd,DRn 3 Move debug register n (=6,7) into rd

OF 24 /n MOV rd,TRn 3 Move test register TRn (=6,7) into rd

B8+rw iv MOV rv,iv Move immediate vword into vword register

8B /r MOV rv,ev Move EA vword into vword register

8E /r MOV segreg,mw Move EA word into segment register (except CS)
A2 i1v MOV xb,AL Move AL into byte variable (offset i1v)

A3 iv MOV xv,eAX Move eAX into vword register (offset iv)

A4 MOVS mb,mb Move byte [SI] to ES:[DI], advance SI1,DI

A5 MOVS mv,mv Move vword [SI] to ES:[DI], advance SI,DI

A4 MOVSB Move byte DS:[S1] to ES:[Dl], advance SI1,DI
A5 MOVSD 3 Move dword DS:[SI] to ES:[DI], advance SI,DI
A5 MOVSW Move word DS:[S1] to ES:[Dl], advance SI1,DI

OF BF /r MOVSX rd,ew 3 Move word to dword, with sign-extend
OF BE /r MOVSX rv,eb 3 Move byte to vword, with sign-extend
OF B7 /r MOVZX rd,ew 3 Move word to dword, with zero-extend
OF B6 /r MOVZX rv,eb 3 Move byte to vword, with zero-extend
8C /r MOVZX rw,seg 3 Move segment register into EA word
F6 /74 MUL eb Unsigned multiply (AX = AL * EA byte)
F7 /74 MUL ev Unsigned multiply (eDXeAX = eAX * EA wvword)
F6 /3 NEG eb Two"s complement negate EA byte
F7 /3 NEG ev Two"s complement negate EA vword
NIL (prefix) Special "do-nothing”™ opcode assembles no code
90 NOP No Operation
F6 /2 NOT eb Reverse each bit of EA byte
F7 /2 NOT ev Reverse each bit of EA word

OF 16/0 NOTBIT eb,CL
OF 17/0 NOTBIT ew,CL Complement bit CL of ew
OF 1E/0 ib NOTBIT eb,ib Complement bit ib of eb

N Complement bit CL of eb

N

N
OF 1F/0 NOTBIT ew,ib N Complement bit ib of ew

3

3

-
o

66 or nil 02 (prefix)
66 or nil 04 (prefix)

Use 16-bit data operand in the next instruction
Use 32-bit data operand in the next instruction

OoC ib OR AL, 1ib Logical-OR immediate byte into AL

oD iv OR eAX,iv Logical-OR immediate word into eAX

80 /1 ib OR eb,ib Logical-OR immediate byte into EA byte
08 /r OR eb,rb Logical-OR byte register into EA byte

83 /1 ib OR ev,ib Logical-OR immediate byte into EA word
81 /1 iv OR ev,iv Logical-OR immediate word into EA word
09 /r OR ev,rv Logical-OR word register into EA word

Page 5

/r
/r

ib
ib

/2
/2
/2
/2
/2
/2

/3
/3
/3
/3
/3
/3
32
31

iw
iw

/0
/0
/0
/0
/0

OR rb,eb
OR rv,ev

OUT ib,AL
OUT ib,eAX
OUT DX,AL
OUT DX, eAX
OUTS DX,eb
OUTS DX, ev
ouUTSB
OuUTSD
ouUTSW

POP DS
POP ES
POP FS
POP GS
POP mv
POP rv
POP SS

POPA
POPAD
POPF

POPFD

PUSH CS
PUSH DS
PUSH ES
PUSH FS
PUSH GS
PUSH 1b
PUSH 1iv
PUSH mv
PUSH rv
PUSH SS

PUSHA
PUSHAD
PUSHF

PUSHFD

RCL
RCL
RCL
RCL
RCL
RCL

eb,1
eb,CL
eb,ib
ev,1
ev,CL
ev,ib

RCR
RCR
RCR
RCR

eb,1
eb,CL
eb,ib
ev,1
RCR ev,CL
RCR ev,ib
RDMSR
RDTSC

REP (prefix)
REPC (prefix)
REPE (prefix)
REPNC (prfix)
REPNE (prfix)
REPNZ (prfix)
REPZ (prefix)

RETF
RET
RETF iw
RET iw

ROL
ROL
ROL
ROL
ROL

eb,1
eb,CL
eb,ib
ev,1
ev,CL

RPWkR R

ww

3 Set

RPRPWW

gl

=z =2

8086/88 Assembly Instruction Set
Logical-OR EA byte into byte register
Logical-OR EA word into word register

Output
Output
Output
Output
Output
Output
Output
Output
Output

Set DS
Set ES
Set FS
Set GS
Set
Set
Set SS

Pop
Pop
Set

Set
Set
Set
Set
Set

memory word to top of stack,
word register to top of stack,

DI,
EDI,ESI ,EBP,Xx,EBX,EDX,ECX,EAX (ESP ign.)
flags register to top of stack,
eflags reg to

[SP-2] to
[SP-2] to
[SP-2] to
[SP-2] to
[SP-2] to

byte
word
byte
word
byte

AL to immediate port number ib

eAX to immediate port number ib

AL to port number DX

eAX to port number DX

[SI] to port number DX, advance SI
word [SI] to port number DX, advance Si
byte DS:[SI] to port number DX, advance SI
dword DS:[SI] to port number DX, advance Si
word DS:[S1] to port number DX, advance Sl

to top
to top
to top
to top

of stack,
of stack,
of stack,
of stack,

increment SP by 2

increment SP by 2

increment SP by 2

increment SP by 2

increment SP by 2
increment SP by 2
to top of stack, increment SP by 2
S1,BP,SP,BX,DX,CX,AX (SP value is ignored)

increment SP by 2
top of stack, incr SP by 2
Cs,
DS,
ES,
FS,
GS,

decrement SP
decrement SP
decrement SP
decrement SP
decrement SP

then
then
then
then
then

by 2
by 2
by 2
by 2
by 2

Push sign-extended immediate byte

Set
Set
Set
Set

[SP-2] to
[SP-2] to
[SP-2] to
[SP-2] to

immediate word, then decrement SP by 2
memory word, then decrement SP by 2
word register, then decrement SP by 2
SS, then decrement SP by 2

Push AX,CX,DX,BX,original SP,BP,SI,DI

Push EAX,ECX,EDX,EBX,original ESP,EBP,ESI,EDI

Set [SP-2] to flags register, then decrement SP by 2
Set [SP-4] to eflags reg, then decr SP by 4

Rotate
Rotate
Rotate
Rotate
Rotate
Rotate

Rotate
Rotate
Rotate
Rotate
Rotate
Rotate

9-bit quantity (CF, EA byte) left once

9-bit quantity (CF, EA byte) left CL times
9-bit quantity (CF, EA byte) left ib times
v+1l-bit quantity (CF, EA word) left once
v+1l-bit quantity (CF, EA word) left CL times
v+1l-bit quantity (CF, EA word) left ib times

9-bit quantity (CF, EA byte) right once

9-bit quantity (CF, EA byte) right CL times
9-bit quantity (CF, EA byte) right ib times
v+1l-bit quantity (CF, EA word) right once
v+1l-bit quantity (CF, EA word) right CL times
v+1l-bit quantity (CF, EA word) right ib times

Read Model Specific Reg #ECX to EDXEAX
Read Time Stamp Counter to EDXEAX

Repeat
Repeat
Repeat
Repeat
Repeat
Repeat
Repeat

Return
Return

RET (far), pop offset, seg,
RET (near), pop offset,

Rotate
Rotate
Rotate
Rotate
Rotate

times
CF=0
ZF=0
CF=1
ZF=1
ZF=1
ZF=0

following
following
following
following
following
following
following

MOVS, LODS,STOS, INS, or OUTS CX
CMPS or SCAS CX times or until
CMPS or SCAS CX times or until
CMPS or SCAS CX times or until
CMPS or SCAS CX times or until
CMPS or SCAS CX times or until
CMPS or SCAS CX times or until

to far caller (pop offset, then
to near caller (pop offset only)
iw bytes

iw bytes pushed before Call

seqg)

left once

left CL times

left ib times

EA vword left once

EA vword left CL times

8-bit EA byte
8-bit EA byte
8-bit EA byte
16- or 32-bit
16- or 32-bit

Page 6

=
O
N
o

ib

AS5/r
A4/r ib

/5
/5
/5
/5
/5
/5 ib

AD/r

AC/r ib

ib

01 /71
00 /0
01 /74

ROL ev,ib
ROL4 eb

ROR
ROR
ROR
ROR

eb,1
eb,CL
eb,ib
ev,1
ROR ev,CL
ROR ev,ib
ROR4 eb
RSM

SAHF
SAL
SAL
SAL
SAL
SAL
SAL

eb,1
eb,CL
eb,ib
ev,1
ev,CL
ev,ib

SAR
SAR
SAR
SAR
SAR
SAR

eb,1
eb,CL
eb,ib
ev,1
ev,CL
ev,ib

SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB

AL, ib
eAX, iv
eb,ib
eb,rb
ev,ib
ev,iv
ev,rv
rb,eb
rv,ev

SCAS mb
SCAS mv
SCASB
SCASD
SCASW

SETBIT eb,CL
SETBIT ew,CL
SETBIT eb, ib
SETBIT ew, ib
SETcond eb
SGDT m

SHL
SHL
SHL
SHL
SHL
SHL

eb,1
eb,CL
eb,ib
ev,1l
ev,CL
ev,ib

SHLD ev,rv,CL
SHLD ev,rv,ib

SHR
SHR
SHR
SHR
SHR
SHR
SHRD
SHRD

eb,1
eb,CL
eb,ib
ev,1
ev,CL
ev,ib
ev,rv,CL
ev,rv,ib

SIDT
SLDT
SMSW
SS
STC
STD
STI

m
ew
ew

azr

NwWwWZ=Z2=22

NN WWE

8086/88 Assembly Instruction Set

Rotate
Rotate nibbles:
8-bit EA
8-bit EA
8-bit EA
16- or 32
16- or 32
16- or 32
nibbles:

Rotate
Rotate
Rotate
Rotate
Rotate
Rotate
Rotate
Resume

Store AH
Multiply
Multiply
Multiply
Multiply
Multiply
Multiply

byte
vwor
vwor
vwor

Signed divide
Signed divide
Signed divide
Signed divide
Signed divide
Signed divide

bo
bo
bo
bo
bo
bo
bo
bo
bo

with
with
with
with
with
with
with
with
with

Subtract
Subtract
Subtract
Subtract
Subtract
Subtract
Subtract
Subtract
Subtract

Compare
Compare
Compare
Compare
Compare

bytes

of eb
of ew

Set bit
Set bit
Set bit ib of eb
Set bit ib of ew
Set eb byte to 1
Store 6-byte Glo

CL
CL

Multiply EA
Multiply EA
Multiply EA
Multiply EA
Multiply EA
Multiply EA

byte
byte
byte
word
word
word

16 or 32-bit EA vword

Heb=Leb

ri
ri
ri

byte
byte
byte
-bit
-bit
-bit
Leb=Heb

by 2,
d by 2,
d by 2,
d by 2,

byte b

EA vword right
EA vword right
EA vword right
Heb=LAL AL=eb
from System Management mode

ght once
ght CL times
ght i1b times

into flags SF ZF xx AF xx PF xx CF
byte by 2, once
byte by 2, CL times

ib times
once

CL times
ib times

y 2, once

byte by 2, CL times

byte b
vword
vword
vword

im
im
im

rrow
rrow
rrow
rrow
rrow
rrow
rrow
rrow
rrow

im
im
wo

if
bal

con
Des

21
2’
21
2’
21

2

Set ev to high of ((ev,

Set ev to high of ((ev,rv)

Unsigned divide
Unsigned divide
Unsigned divide
Unsigned divide
Unsigned divide
Unsigned divide

Set ev to low of ((rv,ev) SHR
Set ev to low of ((rv,ev) SHR

Store 6-byte Interrupt Descriptor Table register to M
Store Local Descriptor Table register to EA word

EA byte
EA byte
EA byte
EA word
EA word
EA word

y 2, ib times
by 2, once

by 2, CL times
by 2, ib times

mediate byte from AL
mediate word from eAX
mediate byte from EA byte
byte register from EA byte
mediate byte from EA word
mediate word from EA word
rd register from EA word
EA byte from byte register
EA word from word register

AL - ES:[DI], advance DI
vwords eAX - ES:[DI1], advance DI
bytes AL - ES:[DI], advance DI
dwords EAX - ES:[DI], advance DI
words AX - ES:[DI], advance DI

dition, O if not

criptor Table register to M

once
CL times
ib times
once

CL times
ib times
rv) SHL CL)
SHL ib)
2, once

CL times
ib times
once

CL times
ib times
CL)

ib)

2
2
2
2

2

Store Machine Status Word to EA word

Use SS segment for the following memory reference

Set carry flag

Set direction flag so SI and DI will decrement
Set interrupt enable flag,

Page 7

left ib times
HAL,Leb=LAL LAL=Heb

once
CL times
ib times

interrupts enabled

OF 31/r
OF 3970

OF 00
2C ib

80 /5
28 /r

81 /5
29 /r
2A /r
2B /r
OF 22

A8 ib

F6 /0
84 /r

85 /r
84 /r
85 /r

/1

OF 10/0
OF 11/0
OF 18/0
OF 19/0

OF 00
OF 00

OF 09
OF 30
OF CO
OF C1

86 /r
87 /r
86 /r

87 /r

34 ib
35 i1v
80 /6
30 /r
83 /6
81 /6
31 /r
32 /r
33 /r

/4
/5

/r
/r

STOBITS rb,rb N
STOBITS rb,ib N
STOS mb

STOS mv

STOSB

STOSD

STOSW

STR ew 2

SUB AL, ib

SUB eAX,iv

SUB eb, ib

SUB eb,rb

SUB ev, ib

SUB ev, iv

SUB ev,rv

SUB rb,eb

SUB rv,ev
SUB4S N

TEST AL, 1b
TEST eAX,iv
TEST eb, ib
TEST eb,rb
TEST ev,iv
TEST ev,rv
TEST rb,eb
TEST rv,ev

TESTBIT eb,CL
TESTBIT ev,CL
TESTBIT eb,ib
TESTBIT ew, ib

VERR ew

<
m
X
=
[0}
=
ArbhOh NN ZZ2ZZ22Z2

XOR rv,ev

8086/88 Assembly Instruction Set

Store AX
Store AX
Store AL

to ES:DI,bit rb (incr. DI,rb), rb+1l bits
to ES:DI,bit rb (incr. DI,rb), ib+1l bits
to byte [DI], advance DI

Store eAX to word [DI], advance DI

Store AL

to byte ES:[DI], advance DI

Store EAX to dword ES:[DI1], advance DI

Store AX

to word ES:[DI], advance DI

Store Task Register to EA word

Subtract
Subtract
Subtract
Subtract
Subtract
Subtract
Subtract
Subtract
Subtract

immediate byte from AL
immediate word from eAX
immediate byte from EA byte
byte register from EA byte
immediate byte from EA word
immediate word from EA word
word register from EA word
EA byte from byte register
EA word from word register

Sub CL nibbles BCD, DS:SI - ES:DI (CL even,NZ)

AND immediate byte into AL for flags only
AND immediate word into eAX for flags only
AND immediate byte into EA byte for flags only

AND byte

register into EA byte for flags only

AND immediate word into EA word for flags only

AND word

register into EA word for flags only

AND EA byte into byte register for flags only
AND EA word into word register for flags only

Test bit
Test bit
Test bit
Test bit

Set ZF=1
Set ZF=1

CL of eb, set Z flag
CL of ew, set Z flag
ib of eb, set zZ flag
ib of ew, set Z flag

if segment can be read, selector ew
if segment can be written to, selector ew

Wait until BUSY pin is inactive (HIGH)
Write Back and Invalidate the Data Cache
Write EDXEAX to Model Specific Reg #ECX

Exchange
Exchange

Exchange
Exchange
Exchange
Exchange
Exchange
Exchange

eb with rb then add into new eb
ev with rv then add into new ev

word register with eAX
byte register with EA byte
word register with EA word
EA byte with byte register
with word register

EA word with word register

Set AL to memory byte [BX + unsigned AL]
Set AL to memory byte DS:[BX + unsigned AL]
Exclusive-OR immediate byte into AL
Exclusive-OR immediate word into eAX
Exclusive-OR immediate byte into EA byte
Exclusive-OR byte register into EA byte
Exclusive-OR immediate byte into EA word
Exclusive-OR immediate word into EA word
Exclusive-OR word register into EA word
Exclusive-OR EA byte into byte register
Exclusive-OR EA word into word register

"N next to the iInstruction description means that instruction works only

on NEC chips.
or later processor.

A digit x means that instruction works only on the x86
See the note just before the chart.

Page 8

